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1. Introduction  

1.1 Problem Statement 
Our client, SmartAg, is creating an autonomous tractor that works solely off of GPS coordinates 
and is guided by a preset path planning algorithm. The coordinates of  obstacles must be set 
manually for every new farm and do not automatically update to changes in the environment. 
This can cause issues when new fences are added permanently to the fields, or when people, 
farm animals, or other farming equipment might be out in the territory. 

1.2 Solution 
We utilized a convolutional neural network in conjunction with stereo cameras to detect 
obstacles and measure their distance from the tractor in real time. Thus tractor’s path can be 
adjusted in actual time to avoid possible collisions. We focused on fences, people, tractors, 
combines, and farm animals to detect these obstacles on fields and report how far away they 
assuming they are staying stagnant and not moving towards or away from us.  

2. Requirements  

2.1 Functional Requirements 
1. The image processing system shall be able to detect objects such as fences, ditches, 

and terraces in real time using an appropriate Neural Network.  
2. Use depth determination techniques to find how far away an object is so that the tractor 

can successfully circumvent them.  
3. Return data that can be used to add object positions to the path planning map so that 

they can be avoided in the future. 

2.2 Non-Functional Requirements 
1. The speed of real-time object detection system should be greater than or equal to 15 

frames per second 
2. The system must fit into and be compatible with any late model tractor 
3. In no way should the system prevent or inhibit manual driving, there should always be a 

safety override to stop the tractor.  
4. The system must be powered by the tractor electrical system and not require any 

additional power than the system can provide for the whole operation.  
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5. This product needs to be easy to use by the target audience (farmers) who have little 
experience with autonomous machinery and neural networks.  

3. Project Design  

3.1 Object Detection 
The object detection system has responsibilities of correctly localizing and identifying multiple 
objects of interest from a real time video feed and send the identified objects to the distance 
determination system. The core of the object detection system relies on the MobileNet SSD 
model chosen from the TensorFlow Object Detection API framework which is an open source 
framework built on top of TensorFlow that makes it easy to construct, train, and deploy object 
detection models.  
 
As mentioned earlier, the system is built around the MobileNet SSD model, which has been 
re-trained to detect five objects of interest - fences, humans, farm animals, tractors and 
combines, as per the request of our client. MobileNet SSD V1 was chosen as our preferred 
model as its running time in milliseconds per 600X600 image was 30ms on a Nvidia GeForce 
GTX TitanX card. Further research showed that the detector performance of the model on the 
COCO dataset, as measured by the mAP score was 21. 
 
The basic layout of our object detection system consists of reading in the real-time video feed 
using openCV and passing it into the trained neural network that detects the objects in each 
frame of the video. Once the bounding boxes are drawn on the objects detected, the bottom left 
and top right coordinates of the bounding boxes - xmin, ymin and xmax and ymax are then 
passed into the distance determination system, which computes the distance as described 
below.  

3.2 Distance Determination 
The final design of the distance determination system consists of two cameras working in 
tandem to calculate the distance and angle to an object of interest. A general flow of information 
through the system can be seen in ​Figure 1  ​below. 
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Figure 1:  

Data Flow through Distance Measurement System 
 
The neural network provides initial object detection one of the video feeds, and feature matching 
is the used to find the matching objects in the second video feed. From here, camera intrinsics 
and the disparity between the two images are used to calculate the distance and angle to the 
object. This information, along with the objects class as detected by the neural net are provided 
to the path planning algorithm. 
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4. Implementation Details  

4.1 Object Detection 
 
To intelligently detect objects in an image we opted to use Mobilenet SSD v1 from the list of 
COCO trained models in Tensorflow’s Model Zoo [1]. This was a tradeoff between the speed of 
the network and its mean average precision (mAP). Mean average precision for COCO is 
defined below.  
 
When training, we look at the known bounding box for a training image and the bounding box for 
a class detection on that image. It is common to assume that an object prediction is correct (a 
true positive) if it’s area of intersection over its area of union (IoU) is greater than 0.5. 
 

 
 

 oU  I =  Area of  union
Area of  intersection =  

 
 
 

 
P (c) Number of  true positives for each class detections with IoU  0.5T =  =  >   
P (c) Number of  false positives for each class detections with IoU  = 0.5F =  =  <   

 
recision P =  TP

TP  + FP  
 

ean Average Precision (mAP )  M = 1
|classes| ∑

 

c∈ classes

TP (c)
TP (c) + FP (c)  

 
Equation 1: Mean Average Precision 

 
For COCO trained models, mean average precision (mAP) is the number of true positives 
divided by total positives averaged over each class. This is then augmented by finding the 
average of mAP over 10 IoU thresholds from 0.5 to 0.95. This gives a good estimate of model 
accuracy in a single statistic. For MobilenetSSD v1, mAP is 21. [2][3] This is lower than other 
models in the zoo, but it is also among the fastest of the models. When dealing with a live video 
feed, speed was very important to our project goals as a proof of concept. Should our client 
decide to develop on our work, we recommend a network with a higher mAP, as accuracy when 
controlling a 35,000 lb tractor is of vital importance. 
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Once our neural network model was settled upon, we were tasked with finding enough images 
to train the model with our objects of interest. Fortunately, the ImageNet database had both 
images and annotations for the objects we wanted to find: fences, farm animals, humans, 
tractors, and combines. We used 2,200 images to train the set of 5 classes.. 20 images from 
each class were used as a training set to calculate our class accuracy. 
 
Once the neural network was properly trained and we obtained a loss of approximately 0.8, we 
decided to test the neural network on real time video feed. There seemed to be some 
misclassifications and some overfitting but overall, the system seemed to perform pretty well. 
The object detection code was then integrated with the distance determination, which will be 
described below. 

4.2 Distance Determination 
For stereoscopic distance calculations, the location of an object must be known in both images. 
Unfortunately, the aforementioned steps are very computationally taxing, meaning that it is 
infeasible to have the neural network detecting objects for both video feeds if we hope to have 
real time performance. Additionally, the neural network approach we are only provided with a 
bounding box, rather than accurate pixel coordinates. This is problematic since the distance 
calculation is heavily reliant on the disparity between pixels of interest between the two camera 
feeds. 
 
Fortunately, OpenCV provides a single solution to both of these problems. The SIFT​[4]​ (Scale 
Invariant Feature Transform) algorithm identifies useful features in a grayscale image. Paired 
with a FLANN (Fast Library for Approximating Nearest Neighbors) matcher, we can efficiently 
compare and match the features in two images. Two regions which have a high number of 
matching features are likely to be matching sections of stereo images.  
 
While this is an improvement over running the neural network two separate times, there are still 
improvements that can be made thanks to the use of the neural network on the first video feed 
and the fact that we are working with stereo images. A useful feature of stereo images is that 
one image is simply a horizontal shift of the other. Additionally, the neural network will provide 
us an AxB pixel window that encapsulates the object of interest. Using these together, we are 
able to perform a horizontal search across the second image using the method explained 
above. By finding the window with the most matches, we have not only found the object in the 
second picture, but we have also obtained numerous matching features in both images which 
will provide more accuracy than simply comparing the bounding boxes. An example of this 
matching process can be seen in ​Image 1 ​below. 
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Image 1: SIFT/FLANN Matching 

 
Now that a set of matching features between the two images has been obtained, we are able to 
combine this with the camera intrinsics to calculate the polar location (distance and angle) of the 
object using ​Equation 2 ​[5][6][7] and ​Equation 3 ​[5][6] below. 
 

z = fb
x −xL R

 
Equation 2: Stereo Depth Measurement with Focal Length 

 z =  b  x* 0
2tan( )(x −x )2

φ
L R

 
Equation 3: Stereo Depth Measurement with View Angle 

 

rctan( )θ = a x0

2x tan(φ)1  

Equation 4: Stereo Angle Measurement 

 f =  x0

2tan( )2
φ  

  
Where z represents the distance to the object, f is the focal length of the camera, b is the 
distance between the two cameras, x​0​ is the image width in pixels, x​L​ and x​R​ are the x 
coordinate of the feature in the left and right images respectively, ​φ​ is the viewing angle of the 
camera, and x​1​ is the pixel distance of the feature from the center of the image. 
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5. Testing Process and Results  

5.1 Object Recognition 

5.1.1 Implementation 
To test the neural network we followed common machine learning practice and divided our 
2,300 image data set into a testing and training data set. This was divided into a 2,200 image 
training set and 100 image testing set. The testing images were completely withheld from the 
training process, so there would not be bias in the test results. We used mAP (Mean Average 
Precision) as an accuracy metric. 

5.1.2 Results  
● Training Loss (five objects): 

 
Figure 1: Neural Network Loss 

 
Training loss is the error on the training set of data. In the range of 500~1000 steps, the 
loss dropped fast. However, after 4000 steps, the loss is almost stays the same.  
 

● Output images: 
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      Image 2:  Horses Image 3: Fence 

 
Image 4: Tractor   Image 5: Combine 
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Image 6: Human 

 
 
 
 
 
 
 

 
 
TensorFlow uses a dataflow graph to represent the computation in terms of the dependencies 
between individual operations. It has inputs, different layers, and finally training weights.  

5.2 Distance Measurement  

5.2.1 Implementation 
To test the distance measurement subsystem we first needed to simulate the output of the 
neural network. To do so, we chose an object of interest and manually created a bounding box 
around it. In addition, we also manually measured the distance to the object. With this 
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information, we could then calculate the distance to the object using stereo properties and 
compare this to the manually measured distance. This process was repeated with various 
objects and differing distances and with different baseline distances between the cameras. 

5.2.2 Results 

Baseline 
Distance 

(cm) 

Actual 
Distance (m) 

Calculated 
Distance Eq 

2 (m) 

Calculated 
Distance Eq 

3 (m) 

Percent Error 
Eq 1 

Percent Error 
Eq 2 

30 27.43 3.69 3.37 86.5 87.7 

30 35.66 3.45 3.15 90.3 91.2 

30 46.63 3.27 3.62 93.0 92.2 

60 27.43 18.4 16.81 32.9 38.7 

60 35.66 28.15 25.73 21.1 27.8 

60 46.63 19.91 22.07 57.3 52.7 

90 27.43 7.68 7.02 72.0 74.4 

90 35.66 5.21 5.78 85.4 83.8 

90 46.63 5.33 5.90 88.6 87.4 

 
Table 1: Distance Measurement Test Results  

 
These results are certainly not ideal, however we were not able to find the cause of the large 
error rates. We have however noticed the trend that a baseline distance of 60 cm seems to be 
optimal for our test case, yielding an average error of 40%. Additionally, all combinations of 
equation and baseline distance saw their worst performance at a distance of ~45 m, meaning 
this is around the feasible limit of our distance calculation.  

5.3 Integration Testing 

5.3.1 Implementation  
Once the two systems had been independently tested, we had to test how well they worked 
together. To do so, we prerecorded stereo video of our clients tractor driving across a field. We 
recorded the tractor driving both in a straight line and at an angle with two different baseline 
distances between the cameras. Using this video data we were able to pass the video feed from 
the left camera through the neural network to perform the initial object detection, and then 
calculate the distance and angle to the object. 
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5.3.2 Results 
The testing for integration is not working perfectly because of the qualities of videos we 
recorded. When recording, we put the cameras on the top of the car, so the hood is inside 
video, and it reflected another tractor. Also, because the tractor in our video was too small, the 
object detection system had a hard time recognizing the tractor. But it worked well when the 
object detection system recognized the tractor, and the system put the the distance in meter in 
Image 7​.  

 
Image 7: Distance for the tractor. 

6. Related Products and Literature 
In developing our object recognition and distance measurement system we had to research into 
variety of fields such as Computer Vision, Deep Learning, Computational Geometry and other 
areas. This research can be divided into the categories specified below. 

6.1 Autonomous tractor vehicles developed by others 
When we researched other products we found some similarities in the Autonomous tractors 
developed by Case IH and New Holland in the problem being solved and the solutions being 
implemented[20][21]. The autonomous tractors developed by these two companies use object 
recognition along with sensors such as radar, LiDar and cameras to detect both stationary and 
moving farming obstacles in its path.  Both our image recognition system and the autonomous 
tractors developed by these companies rely on live video feed to assist the tractor in detecting 
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obstacles and assisting in its navigation. However, our project primarily relies on detecting 
obstacles by using Neural Network while the others mentioned above primarily rely on various 
sensors to identify obstacles. Hence, our solution potentially could be more cost-effective in the 
long run. Although our project aims to assist a tractor navigate by recognizing obstacles and 
sending polar coordinates to its path planner, it could be used irrespective of the tractor model 
being used.  
 
Likewise, John Deere is collaborating with NASA to design a completely autonomous 
tractor.This collaboration has been in the works since 2011 and is not yet in production. John 
Deere is still working on this technology, but is also marketing an auto-steer product. This keeps 
farmers driving their tractors in a straight line down the fields, but does nothing for object 
detection. If you were to see a new fence, you would have to manually stop and manually add 
that fence into the tractor’s field database.  
 
There are also some similar products currently in the works outside of the agricultural field. 
General Motors, Tesla and Waymo (Google) are all currently in the testing phase for fully 
autonomous motor vehicles with real time obstacle detection. These products will primarily be 
driven on roads and not used for agricultural harvesting and production. Tesla currently has cars 
on the market that are semi-autonomous where the car can control steering and speed under 
certain conditions, but the driver is still in charge of driving the vehicle.These related products 
show that we are tackling a very complex and difficult problem as some high tech companies 
are still working on the idea of autonomous vehicles.  
 

6.2 Computer Vision Literature 
Both object detection and distance measurement are open areas of study and research in 
computer science. Thanks to this, there was a wealth of literature available to assist us in this 
project. At the beginning of our research phase we read a plethora of papers 
[13][14][15][16][17][18] comparing various neural networks together. Ultimately, combined with 
our own testing, this information lead us to the final decision of using Mobilenet SSD over its 
competitors. In addition to literature comparing neural networks, we took advantage of 
Stanford’s free course, CS 231n [19] to gain an understanding of the fundamentals of neural 
networks which was the source of a definite knowledge gap on our team.  
 
In regard to distance measurement, we read numerous research papers documenting the 
concept of both mono[10][11][12] and stereo [6][7][8] vision solutions to distance measurement. 
Although there was literature to support both methods as viable solutions, the stereo method 
was uniform across different sources while the monovision methods varied across sources. Due 
to this, we felt that the stereo method seemed to be more generally accepted, so we opted to 
use stereo calculations in our project. Fortunately, most of these papers are written in the 
context of robotics and autonomous systems, so the concepts could be directly translated to our 
project. 
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Appendix I: Operation Manual 

A1.1 Object Detection: 

A1.1.1 To re-train the neural network:  
The project works well on iOS or linux operating systems. The machine should have the 
anaconda environment installed as well as tensorflow, openCV and pip packages which can be 
done on the conda environment.  
 
We will need a dataset of images and corresponding annotations. The resource we used for 
acquiring the data is the imageNet dataset ​[8]​. 
 
Part 1: 
Download the object detection code from github ​[9] 
 
Part 2: 
After downloading the images and the annotations follow these steps: 
 

1. Match images to xls using the MATLAB code (provided in appendix 4 - pairxml.mat) 
2. Separate the images into training and testing folder. A 80-20 approach can be used 

where 80% of the images and their corresponding annotations in the dataset will be 
training and the other 20% will be testing. 

3. Run command- ​python xml_to_csv.py (python file is provided in appendix 4) 
 
Part 3: 
Navigate to the research folder in the object detection code downloaded - ../models/research 
 

1. Activate tensorflow using this command - source activate tensorflow (on mac or linux) or 
activate tensorflow (on windows) 

2. Export the path - ​export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim 
3. Navigate to the object_detection folder 
4. Run generate_tfrecord.py 
5. Modify: 

a. ssd_mobilenet_v1_coco.config //or the name of your model 
i. Change the number of classes trained to the number of classes you have 
ii. The number of examples should be equal to the number of testing image 
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iii. Change the number of steps in training to your required number of 
training steps. 

b. Object-detection.pbtxt 
i. Add your class labels in the following format depending on your classe 

like given below: 

 
Part 4: 
 

1. Move all of these files into the object_detection folder: 
a. From the data folder: 

i. Test_labels.csv 
ii. Test.record 
iii. Train_labels.csv 
iv. Train.record 

b. ssd_mobilenet_v1_coco_2017_11_17 //or the corresponding model you trained 
c. ssd_mobilenet_v1_coco.config 
d. From the training folder: 

i. Object-detection.pbtx 
e. Folder containing all of your images  

 
Miscellaneous: 
 

1. Run this command if you need to reconfigure protoc 
/local/seniorDesign/models/protoc_3.3/bin/protoc 

object_detection/protos/*.proto --python_out=. 
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2. Change checkpoint number to restart training from a specific checkpoint. 
python3 export_inference_graph.py \ 

    --input_type image_tensor \ 

    --pipeline_config_path training/ssd_mobilenet_v1_coco.config \ 

    --trained_checkpoint_prefix training/model.ckpt-​8746​ \ 
    --output_directory training_inference_graph 

A1.1.2  Run training and testing 
1. To start the training run this command from ../models/research/object_detection. 

python3 train.py --logtostderr --train_dir=training/ 

--pipeline_config_path=training/ssd_mobilenet_v1_coco.config 

Change the .config file to the config file of the model you are using.  
2. To test the trained model run the command - python object_detection_tutorial.py 

A1.4 Undistorting Images 
1. Open MATLAB and select the Image Calibration app 
2. Load in at least 15 images of a standard calibration checkerboard for each camera. 
3. Export camera intrinsics to text file 

a. Steps 2-3 are handled by a single MATLAB script we have included 
4. Load in camera intrinsics using Python script and apply undistort method 

a. Handled by 2 Python methods 
 
Note: Distance calculation accuracy decreased when undistortion was applied, and we say little 
effect on object detection, so we have decided against undistorting images. 

A1.3 Required Hardware 
● Two identical USB cameras 
● Dedicated GPU 

A1.4 Required Software 
● Python 3 
● Pip 
● Anaconda environment 
● Opencv-Contrib-Python 
● Tensorflow 
● Tensorflow Object Detection API 
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A1.5 Using the integrated system 
The integrated system will run on any pre-recorded video or live video feed. The system 
provides distance estimates to obstacles of interest. Knowing the tractor’s position from its 
onboard GPS, and the location of the cameras on the tractor, the coordinates of the obstacle 
can be calculated. These coordinates can then be used to update SmartAg’s path planning 
algorithm. 

Appendix II - Alternative Designs  
1. Initially, we considered using other neural network models such as Darkflow and 

Darknet. However, further research proved that MobileNet SSD provided faster and 
more accurate results.  

2. The Caffe framework was initially used as a backend for training the neural network 
model. However, due to the various dependencies that Caffe used, we had trouble 
installing and working with it. We found an alternative version of Mobile Net SSD that 
worked with Tensorflow as a backend and we were able to implement that. 

3. There was always a tradeoff associated with the speed and accuracy of the neural 
networks used. We tried training the two different neural network models - Faster RCNN 
inception and Mobile Net SSD. According to the papers we referred, Faster RCNN 
inception was supposed to be faster and more accurate However, it proved to be a 
challenge to set up and run on our computers and resulted in multiple errors and 
exceptions. 

4. We calibrated our cameras to account for distortion in the video feed. However, we get 
less accurate results for distance measurement when we do the camera calibration. 
Hence, we opted not to undistort the video feed before performing the distance 
calculation. 

5. For finding matching features in both images we attempted to use MSER(Maximally 
Stable Extremal Regions). However, the results we obtained were inconclusive and we 
opted to use SIFT detector to find matching features in both the images. 

6. We have considered using Neural Network models such as DepthNet and W-net for 
doing the distance measurement. Since running two Neural Networks with a single 
Nvidia TX2 GPU would be very computationally intensive, we opted to use stereo vision 
instead to perform distance calculation. 

7. An alternate design that we considered early on was to calculate the distance off of data 
from a single camera. To make up for the lack of stereo image data, this requires either 
using rotational (two images taken at different angles) or translational (two pictures taken 
as the tractor drives) data to measure distance. Since this is a more dynamic platform 
we felt that there was a higher likelihood for error with this design. 
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Appendix III - Other Considerations 
As a team we studied training and testing a neural network model, and found that it involves lot 
of trial and error. Our group spent a significant time collecting and annotating images in order to 
train our object recognition model, but we fell short of obtaining good accuracy results most of 
the time. We had to go back, gather more data and retrain the model multiple times to see how 
the accuracy gets affected. Fortunately, the model we used for doing the object detection 
performed data augmentation on the images we passed in and we were eventually able to get 
the neural network to identify our objects of interest correctly. To prevent overfitting we also 
tweaked parameters such as the dropout rate which allows a percentage of nodes from a given 
layer to be removed and “drop out” from the network. We then saw an improvement in terms of 
how well our model performed on the testing set. 
 
We learnt a lot about TensorFlow and OpenCV while working on this project, and for most of us 
this was our first experience with the technology. Also, we had a lot of practice with collecting 
and labelling images. This was also the first time we worked with AWS (Amazon Web Services) 
and we found that service to be helpful in training our object recognition model when we did not 
have access to any GPU. Most of the underlying concepts we used to accomplish this project 
such as Convolutional Neural Network and Scale Invariant Feature Transform were fairly new to 
us and it took us a significant time to gain an in-depth understanding of these concepts 
necessary to complete the project. However, once we understood them it was very rewarding to 
put those concepts into practice. 
 
All in all, we have learnt that it takes a lot of time and effort to make any project truly successful. 
This project has taught us the value of patience and perseverance and has enforced the 
essential skills of dedication and optimism to see the project work.  
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Appendix IV - Code 

A.4.1 PairXML.mat 
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A.4.2 xml_to_csv.py 
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